Using pupillometry to investigate the better ear advantage

Alan Kan
University of Wisconsin-Madison
ahkan@waisman.wisc.edu

Matthew B. Winn
University of Washington
mwin2@uw.edu

INTRODUCTION

- For normal hearing listeners, a small right ear advantage (EA) is typically observed in a dichotic digits task (see Fig 1).
- The right EA may have an anatomical explanation (see Fig 2), but variations in EA can occur in the dichotic digits task results, which means that:
 1. the task may not be sensitive enough to measure a stable EA; or
 2. the right-EA is not due to anatomical asymmetry [1].
- Although EAs may be difficult to detect consistently with percent correct scores on the dichotic digits task, it might be revealed in terms of an asymmetry in listening effort.
- Pupil dilation can show subtle changes in listening effort [3,4,5], and provides a way to study the time course of the EA.

Figure 1. In a dichotic digits task, listeners are presented with a pair of digits in both ears, simultaneously. They respond by recalling all digits they hear in any order.

The aim of this study is to determine whether pupillary response will provide a more sensitive method for establishing the presence of an ear advantage.

METHODS

- PARTICIPANTS: Twenty-one normal hearing listeners were screened based on pure-tone averages (PTAs) computed from hearing thresholds at 500, 1000 and 2000 Hz in each ear. All listeners had less than 7.5 dB difference in PTAs across the ears.
- PROCEDURE: Listeners completed a dichotic digits task for the conditions shown in Fig 3. Pupil dilation data was recorded in each trial (see Fig 4) and averaged for each condition.
- RELIABILITY: Each listener was tested twice, with at least one week between visits.

Figure 3. Test Conditions. Listeners were instructed prior to stimulus presentation to verbally repeat either just the left ear digits, right ear digits, or all presented digits (shown in bold type). Sequence of digits were generated randomly for each trial, and each condition was tested 20 times.

Figure 4. Dichotic digits were presented at 57 dB SPL through headphones (Sennheiser HD-280) to the left and right ears, simultaneously. During the task, pupil diameter was measured using an eye tracker (SR Research Eyelink 1000 Plus).

RESULTS

- In the dichotic digits task, most subjects showed less than 3% difference in accuracy scores between ears (Fig. 5).
- In the Left 2/Right 2 and Left 4/Right 4 conditions, more subjects showed an EA, but not necessarily a right-EA (Fig. 5).
- On average, the amount of pupil dilation was different for each condition during the time between the end of stimulus presentation and the response period (Fig. 6).
- Largest amount of pupil dilation (more effort) is seen when recalling digits from both ears (green). For most subjects, more pupil dilation is observed when attending to the left ear vs the right ear, especially in the recall Left 4/Right 4 conditions (Fig. 6).

Figure 5. EA from accuracy scores. An EA here is identified when the difference in percent correct between the ears was greater than 3% (two or more digit difference).

Figure 6. Group-averaged pupil dilation. The dashed and dotted lines indicate stimulus offset, and response prompt, respectively.

Figure 7. EA revealed by pupil dilation during the period (a) two seconds after stimulus offset, and (b) two seconds after response prompt. Blue and red correspond to left- and right-EA, respectively, and shading is related to the log-ratio of recall left to recall right pupil response.

CONCLUSIONS

- When listening dichotically, attending to the right ear typically required less effort, even when accuracy scores are similar.
- The right-ear advantage for lower listening effort is more pronounced for more difficult tasks.
- Pupillometry may be more sensitive than accuracy scores for measuring an ear advantage.

REFERENCES

ACKNOWLEDGEMENTS

We would like to thank all of our participants for their time and effort, and Kay Kim and Ellen Master for their help with data collection. This work was supported by grants from the Hearing Health Foundation (13-0874 to AK), NH-NICCD (R02DC015321 to AK), R01DC014399 to MW, and R01DC003083 to RYL and NIH-MH (F3P0D05352 to Waisman Center).